A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the human biomonitoring of non-occupational exposure to the fragrance 2-(4-tert-butylbenzyl)propionaldehyde (lysmeral)

2-(4-tert-Butylbenzyl)propionaldehyde also known as lysmeral, lilial, or lily aldehyde (CAS No. 80-54-6) is a synthetic odorant mainly used as a fragrance in a variety of consumer products like cleaning agents, fine fragrances, cosmetics, and air fresheners. Due to its broad application in various fields, lysmeral was selected for the development of a biomonitoring method for the quantitative exposure assessment within the frame of the cooperation project of the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB) and the German Chemical Industry Association (VCI). A method based on ultra-high pressure liquid chromatography combined with tandem mass spectrometry (UPLC-MS/MS) was developed for the simultaneous determination of potential biomarkers of lysmeral in human urine samples. Sample clean-up was performed by liquid-liquid extraction (LLE). Quantification was achieved by standard addition using stable isotope-labelled, authentic reference standards. The method is characterised by its robustness, reliability, and excellent sensitivity as proven during method validation according to approved standard guidelines. The following five lysmeral metabolites were identified as potential biomarkers of exposure for lysmeral in human urine samples: lysmerol, lysmerylic acid, hydroxylated lysmerylic acid, tert-butylbenzoic acid (TBBA), and tert-butylhippuric acid (TBHA). The determination of lysmerol required derivatisation with 3-nitrophthalic acid anhydride and showed the lowest limit of detection (LOD) and limit of quantification (LOQ) in urine (0.035 and 0.10 ?g/L, respectively). LOD and LOQ for the other metabolites were in the range of 0.12-0.15 and 0.36-0.45 ?g/L, respectively. Accuracy for all analytes was in the range of 90-110%. Intra- and inter-day precision was in the range of 5-10%, except for TBHA, for which the coefficient of variation was unacceptably high (>20 %) and therefore excluded from the method. The method was applied to urine samples of 40 adult volunteers. The four remaining lysmeral metabolites were detectable in most of the 40 urine samples in the following order according to quantity excreted: TBBA >> lysmerol ? lysmerylic acid > hydroxy-lysmerylic acid. In conclusion, the authors successfully developed a biomonitoring method for the assessment of the exposure to lysmeral in the general population. The method is characterised by its precision, robustness, and accuracy. The metabolites lysmerol, lysmerylic acid, hydroxylated lysmerylic acid, and TBBA turned out to be suitable biomarkers of exposure to lysmeral, either alone or in combination with one or more of the other metabolites. Sensitivity was found to be sufficient for assessing the background exposure to this chemical in the general population.

Authors: Pluym N, Krnac D, Gilch G, Scherer M, Leibold E, Scherer G. ;Full Source: Analytical and Bioanalytical Chemistry. 2016 Jul 1. [fusion_builder_container hundred_percent=”yes” overflow=”visible”][fusion_builder_row][fusion_builder_column type=”1_1″ background_position=”left top” background_color=”” border_size=”” border_color=”” border_style=”solid” spacing=”yes” background_image=”” background_repeat=”no-repeat” padding=”” margin_top=”0px” margin_bottom=”0px” class=”” id=”” animation_type=”” animation_speed=”0.3″ animation_direction=”left” hide_on_mobile=”no” center_content=”no” min_height=”none”][Epub ahead of print] ;[/fusion_builder_column][/fusion_builder_row][/fusion_builder_container]