Application of machine learning to predict the inhibitory activity of organic chemicals on thyroid stimulating hormone receptor


With the promotion of carbon neutrality, it is also important to synchronously promote the assessment and sustainable management of chemicals so as to protect public health. Humans and animals are possibly exposed to endocrine disruptors that have inhibitory effects on thyroid stimulating hormone receptor (TSHR). As such, it is important to identify chemicals that inhibit TSHR and to develop models to predict their inhibitory activity. In this study, 5952 compounds derived from a cyclic adenosine monophosphate (cAMP) analysis, a key signaling pathway in thyrocytes, were used to establish a binary classification model comparing methods that included random forest (RF), extreme gradient boosting (XGB), and logistic regression (LR). The prediction model based on RF showed the highest identification accuracy for revealing chemicals that may inhibit TSHR. For the RF model, recall was calculated at 0.89, balance accuracy was 0.85, and its receiver operating characteristic (ROC) curve-area under (AUC) was 0.92, indicating that the model had very high predictive capacity. The lowest CDocker energy (CE) and CDocker interaction energy (CIE) for chemicals and TSHR were determined and were subsequently introduced into the predictive model as descriptors. A regression model, extreme gradient boosting-Regression (XGBR), was successfully established yielding an R2 = 0.65 to predict inhibitory activity for active compounds. Parameters that included dissociation characteristics, molecular structure, and binding energy were all key factors in the predictive model. We demonstrate that QSAR models are useful approaches, not only for identifying chemicals that inhibit TSHR, but for predicting inhibitory activity of active compounds.

Authors: Xiaotian Xu, Chen Wang, Bingxin Gui, Xiangyi Yuan, Chao Li, Yuanhui Zhao, Christopher J Martyniuk, Limin Su
; Full Source: Environmental research 2022 Mar 26;212(Pt A):113175. doi: 10.1016/j.envres.2022.113175.