Arsenic induces transgenerationla behavior disorders in Caenorhabditis elegans and its underlying mechanisms


The present study aimed to identify the effects of arsenic on behaviors in Caenorhabditis elegans (C. elegans) and the transgenerational effects. The synchronized C. elegans (P generation) were exposed to 0, 0.2, 1.0, and 5.0 mM NaAsO2 and the subsequent generations (F1 and F2) were maintained on fresh nematode growth medium (NGM). The behaviors and growth were recorded at 0, 12, 24, 36, 48, 60, and 72 h post synchronization. The results demonstrated that arsenic affected various indicators regarding the behavior (head thrash, body bend, movement speed, wavelength, amplitude and so on) and in general the effects started to accumulate from 24 h and lasted throughout the exposure. The behavior impairments were transgenerational with varying patterns, amongst the head thrash and body bend responded most sensitively though the responses gradually declined across generations. Arsenic exposure inhibited the growth (body length, body width, and body area) in P C. elegans from 24 h to 60 h, however there was no difference between treatments groups and the control at 72 h. Arsenic led to a dose-dependent degeneration of dopaminergic neurons in C. elegans, and inhibition of BAS-1 and CAT-2 expressions. The expressions of GCS-1, GSS-1, and SKN-1 were induced by arsenic exposure. Overall, chronic arsenic exposure impaired the behaviors and there were transgenerational effects. The head thrash and body bend responded most sensitively. Arsenic induced behavioral disorders might be attributed to degeneration of dopaminergic neurons which was associated with oxidative stress.

Authors: Zhang X, Zhong HQ, Chu ZW, Zuo X, Wang L, Ren XL, Ma H, Du RY, Ju JJ, Ye XL, Huang CP, Zhu JH, Wu HM
; Full Source: Chemosphere. 2020 Mar 16;252:126510. doi: 10.1016/j.chemosphere.2020.126510. [Epub ahead of print]