Dendritic epidermal T cells in allergic contact dermatitis


Allergic contact dermatitis (ACD) is a common inflammatory skin disease with a prevalence of approximately 20% in the European population. ACD is caused by contact allergens that are reactive chemicals able to modify non-immunogenic self-proteins to become immunogenic proteins. The most frequent contact allergens are metals, fragrances, and preservatives. ACD clinically manifests as pruritic eczematous lesions, erythema, local papules, and oedema. ACD is a T cell-mediated disease, involving both CD4+ and CD8+ T cells. In addition, γδ T cells appear to play an important role in the immune response to contact allergens. However, it is debated whether γδ T cells act in a pro- or anti-inflammatory manner. A special subset of γδ T cells, named dendritic epidermal T cells (DETC), is found in the epidermis of mice and it plays an important role in immunosurveillance of the skin. DETC are essential in sensing the contact allergen-induced stressed environment. Thus, allergen-induced activation of DETC is partly mediated by numerous allergen-induced stress proteins expressed on the keratinocytes (KC). Several stress proteins, like mouse UL-16-binding protein-like transcript 1 (Mult-1), histocompatibility 60 (H60) and retinoic acid early inducible-1 (Rae-1) α-ε family in mice and major histocompatibility complex (MHC) class I-chain-related A (MICA) in humans, are upregulated on allergen-exposed KC. Allergen-induced stress proteins expressed on the KC are consequently recognized by NKG2D receptor on DETC. This review focuses on the role of γδ T cells in ACD, with DETC in the spotlight, and on the role of stress proteins in contact allergen-induced activation of DETC.

Authors: Veronika Mraz, Carsten Geisler, Charlotte Menné Bonefeld
; Full Source: Frontiers in Immunology. 2020 May 19;11:874. doi: 10.3389/fimmu.2020.00874. eCollection 2020.