Effects of exposure to fine particulate matter on the decline of lung function in rural areas in northwestern China

2021-10-08

Our aim was to clarify the main factors associated with lung function and to analyze the correlation between fine particulate matter (PM2.5) and lung function in a rural Chinese population. We analyzed data of 5195 participants in the China Northwest Natural Population Cohort: Ningxia Project who were ≥ 30 years old. They were recruited from 2018 to 2019, underwent spirometry during the physical examination, and completed a self-report questionnaire. A satellite-based spatiotemporal model was used to estimate the 2-year average PM2.5 exposure based on participants’ home addresses. A generalized linear mixed model was used to test the relationship between PM2.5 concentration and lung function. Sex, age, exposure to cooking oil fumes, and occupational exposure were negatively correlated (P < 0.05) with forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1). Educational status, economic level, tea consumption, and alcohol consumption were positively correlated (P < 0.05) with FVC and FEV1. The adjusted results of each model revealed that FVC and FEV1 decreased with increased exposure to PM2.5. There was a strong negative correlation between a PM2.5 concentration of 35.66 μg/m3 and FVC, FEV1, and FEV1/FVC, with unadjusted hazard ratios of - 0.06 (95% confidence interval, - 0.10 to - 0.01), - 0.13 (- 0.17 to - 0.10), and - 22.10 (- 24.62 to - 19.26), respectively. In conclusion, long-term exposure to high concentrations of ambient PM2.5 is related to reduce lung function among people in rural areas in northwestern China.

Authors: Di Tian, Xiyuan Chen, Pengyi Hou, Yi Zhao, Yu Zhao, Yajuan Zhang, Jiangping Li, Yuhong Zhang, Faxuan Wang
; Full Source: Environmental science and pollution research international 2021 Oct 8. doi: 10.1007/s11356-021-16865-0.