Evaluating the dynamic distribution process and potential exposure risk of chlorinated paraffins in indoor environments of Beijing, China

2022-09-06

Chlorinated paraffins (CPs) are typical semi-volatile chemicals (SVOCs) that have been used in copious quantities in indoor material additives. SVOCs distribute dynamically between the gas phase and various condensate phases, especially organic films. Investigating the dynamic behaviors of existing CPs in indoor environments is necessary for understanding their potential risk to humans from indoor exposure. We investigate the distribution profiles of CPs in both gas phase and organic films in indoor environments of residential buildings in Beijing, China. The concentrations of CPs were in the range of 32.21-1447 ng/m3 in indoor air and in the range of 42.30-431.1 μg/m2 and in organic films. Cooking frequency was identified as a key factor that affected the distribution profiles of CPs. Furthermore, a film/gas partitioning model was constructed to explore the transportation and fate of CPs. Interestingly, a re-emission phenomenon from organic films was observed for chemical groups with lower log Koa components, and, importantly, their residue levels in indoor air were well predicted. The estimated exposure risk of CPs in indoor environment was obtained. For the first time, these results produced convincing evidence that the co-exposure risk of short-chain CPs (SCCPs), medium-chain CPs (MCCPs), and long-chain CPs (LCCPs) in indoor air could be further increased by film/gas distribution properties, which is relevant for performing risk assessments of exposure to these SVOCs in indoor environments.

Authors: Lu Bai, Kun Lv, Juan Li, Wei Gao, Chunyang Liao, Yawei Wang, Guibin Jiang
; Full Source: Journal of hazardous materials 2022 Sep 6;441:129907. doi: 10.1016/j.jhazmat.2022.129907.