Exposure to endocrine disrupting chemicals (EDCs) and cardiometabolic indices during pregnancy: The HOME Study


Background: Toxicology studies have identified pregnancy as a window of susceptibility for endocrine disrupting chemicals (EDCs) and cardiometabolic indices in women. No study in humans, however, has examined EDC mixtures and cardiometabolic indices during pregnancy.

Methods: We used the Health Outcomes and Measures of the Environment (HOME) Study to examine whether bisphenol A (BPA), polybrominated diphenyl ethers (PBDEs), per- and polyfluoroalkyl substances (PFAS), and phthalates are associated with blood pressure, glucose, and lipids in 388 pregnant women. We measured PBDEs and PFAS in serum at 16 weeks gestation, while BPA and phthalate metabolites were quantified in urine at 16 and 26 weeks gestation. We used linear regression and Bayesian Kernel Machine Regression (BKMR) to estimate covariate-adjusted associations of individual EDCs and their mixtures with cardiometabolic indices during pregnancy.

Results: A 10-fold increase in BDE-28 was associated with a 13.1 mg/dL increase in glucose (95% Confidence Interval [CI] 2.9, 23.2) in linear regression. The BKMR model also identified BDE-28 as having a positive association with glucose. BDE-28, BDE-47, and BDE-99 were positively associated with total cholesterol in both single- and multi-pollutant models, whereas a suggestive negative association was noted with BDE-153. Mono-n-butyl phthalate (MBP) (β = -7.9 mg/dL, 95% CI -12.9, -3.0) and monobenzyl phthalate (MBzP) (β = -6.3 mg/dL, 95% CI -10.6, -2.0) were both associated with significant decreases in cholesterol in linear regression, but only MBzP was identified as an important contributor in the BKMR model.

Conclusion: Overall, we observed positive associations between PBDEs with glucose and cholesterol levels during pregnancy, while negative associations were found between some phthalate biomarkers and cholesterol. No relationship was noted for BPA or PFAS with cardiometabolic indices during pregnancy across both models.

Authors: Ann M Vuong, Joseph M Braun, Andreas Sjödin, Antonia M Calafat, Kimberly Yolton, Bruce P Lanphear, Aimin Chen
; Full Source: Environment international 2021 Nov;156:106747. doi: 10.1016/j.envint.2021.106747.