Long-term air pollution, noise, and structural measures of the Default Mode Network in the brain: Results from the 1000BRAINS cohort


Background: While evidence suggests that long-term air pollution (AP) and noise may adversely affect cognitive function, little is known about whether environmental exposures also promote structural changes in underlying brain networks. We therefore investigated the associations between AP, traffic noise, and structural measures of the Default Mode Network (DMN), a functional brain network known to undergo specific changes with age.

Methods: We analyzed data from 579 participants (mean age at imaging: 66.5 years) of the German 1000BRAINS study. Long-term residential exposure to particulate matter (diameter ≤10 μm [PM10]; diameter ≤2.5 μm [PM2.5]), PM2.5 absorbance (PM2.5abs), nitrogen dioxide (NO2), and accumulation mode particulate number concentration (PNAM) was estimated using validated land use regression and chemistry transport models. Long-term outdoor traffic noise was modeled at participants’ homes based on a European Union’s Environmental Noise Directive. As measures of brain structure, cortical thickness and local gyrification index (lGI) values were calculated for DMN regions from T1-weighted structural brain images collected between 2011 and 2015. Associations between environmental exposures and brain structure measures were estimated using linear regression models, adjusting for demographic and lifestyle characteristics.

Results: AP exposures were below European Union standards but above World Health Organization guidelines (e.g., PM10 mean: 27.5 μg/m3). A third of participants experienced outdoor 24-h noise above European recommendations. Exposures were not consistently associated with lGI values in the DMN. We observed weak inverse associations between AP and cortical thickness in the right anterior DMN (e.g., -0.010 mm [-0.022, 0.002] per 0.3 unit increase in PM2.5abs) and lateral part of the posterior DMN.

Conclusion: Long-term AP and noise were not consistently associated with structural parameters of the DMN in the brain. While weak associations were present between AP exposure and cortical thinning of right hemispheric DMN regions, it remains unclear whether AP might influence DMN brain structure in a similar way as aging.

Authors: Sarah Lucht, Lina Glaubitz, Susanne Moebus, Sara Schramm, Christiane Jockwitz, Svenja Caspers, Barbara Hoffmann
; Full Source: International journal of hygiene and environmental health 2021 Oct 27;239:113867. doi: 10.1016/j.ijheh.2021.113867.