New insights into the photo-degraded polystyrene microplastic: Effect on the release of volatile organic compounds


Excessive use of plastics leads to the ubiquity of plastic waste in the environment. Weathering can cause changes in the properties of plastics and lead to the release of various chemicals especially the volatile organic compounds (VOCs). Possible photodegradation pathway of polystyrene (PS) microplastics (MPs) was proposed and verified by the detection of VOCs. Headspace solid phase microextraction (HS-SPME) was employed to investigate the release behavior of VOCs from PS MPs exposed to simulated ultraviolet (UV). Results indicated that although the physicochemical properties of the PS MPs showed no significantly change after UV-irradiation, a variety of toxic VOCs, such as benzene, toluene, and phenol were detected from the irradiated MPs. UV irradiation progressively enhanced the release amount of VOCs with total concentration up to 66 μg g-1 after 30 d of exposure, about 2.4 times higher than that stored in the darkness (27 μg g-1). Some compounds (e.g., benzene and toluene) showed an upward trend over irradiation time, while others (e.g., styrene and 2-propenylbenzene) reduced over time. Results also found that the size of MPs could affect the release amounts but without consistent pattern for different VOCs detected in the headspace of the vial. In general, current study provided a new insight on the photo-aging process of MPs.

Authors: Xinyan Wu, Xinlv Chen, Ruifen Jiang, Jing You, Gangfeng Ouyang
; Full Source: Journal of hazardous materials 2022 Feb 24;431:128523. doi: 10.1016/j.jhazmat.2022.128523.