Occupational health and safety, metal exposures and multi-exposures health risk in Canadian electronic waste recycling facilities


Electronic waste recycling (e-recycling) involves manual operations that expose workers to toxic metals. We aim to describe occupational health and safety practices and workers’ exposures to metals in the Canadian formal e-recycling industry, and to estimate the health risk associated with multiple exposures. This cross-sectional study documented practices through observations and questionnaires, and assessed metal exposures using personal air samples and biomarkers. Health risks were estimated relative to recognised occupational exposure guidelines, and using an additive approach for consideration of multiple exposures. Six e-recycling and one commercial recycling facilities were investigated, and the metal exposures of 99 workers (23 women) were measured. In most facilities, dust control was inadequate and personal protective equipment was improperly worn. In e-recycling, lead was detected in all air samples and in most blood samples, up to 48 µg/m3 and 136 µg/l, respectively. Other quantified metals included beryllium, mercury, arsenic, barium, cadmium, chrome, cobalt, copper, indium, manganese, nickel and yttrium. When handling cathode ray tube screens, workers were 4.9 times and 8.5 times more likely to be exposed to lead and yttrium, respectively, than workers who were not assigned to a specific type of electronics. Overall, exposures were largely associated with facility size and airborne dust concentration. The additive hazard indices for airborne exposures raised concerns for kidney disorders, for peripheral and central nervous systems, and for the male reproductive system. Minimizing airborne dust through collective control methods and adequately using personal protection should reduce metal exposures and associated health risks in this growing industry.

Authors: Sabrina Gravel, Brigitte Roberge, Mickaël Calosso, Sébastien Gagné, Jacques Lavoie, France Labrèche
; Full Source: Waste management (New York, N.Y.) 2023 Apr 28;165:140-149. doi: 10.1016/j.wasman.2023.04.026.