Occurrence, impact, toxicity, and degradation methods of microplastics in environment-a review

2022-01-28

Microplastic defines as a tiny plastic particle that has a size of less than 5 mm and is ubiquitous in the environment. Due to the tiny size, this microplastic adversely affected the environment, notably aquatic life via ingestion, choking, and entanglement. This microplastic is arduous to degrade as it takes a thousand years due to the properties of plastic itself and consequently remains in nature. In dealing with microplastic issues, this paper reflects the occurrence, impact, toxicity, and degradation methods of microplastics in the environment including physical, chemical, and biological treatments. Here, the physical treatment methods include incineration treatment, ultraviolet (UV), and photocatalytic. The incineration process contributes to environmental pollution due to the release of toxic gases into the atmosphere. In addition, chemical treatments for plastic waste are the degradation process involving chemical additives such as ethylene glycol (EG), nano-magnesium oxide (MgO), diethylene glycol (DEG), and calcium or zinc (Ca/Zn) stearate as a catalyst. These treatments depend on the chemicals that can affect human health and the ecosystem. The biodegradation treatment using bacterial and fungal species can consume the microplastic without disrupting the surrounding environment and biota. It includes recent findings on the biodegradation of microplastic under aerobic and anaerobic conditions. Thus, biodegradation can be considered the best option to degrade microplastic as green and sustainable technology.

Authors: Norhafezah Kasmuri, Nur Aliah Ahmad Tarmizi, Amin Mojiri
; Full Source: Environmental science and pollution research international 2022 Jan 28. doi: 10.1007/s11356-021-18268-7.