Placental Transfer and Composition of Perfluoroalkyl Substances (PFASs): A Korean Birth Panel of Parent-Infant Triads


Exposure to perfluoroalkyl substances (PFASs) is of public concern due to their persistent exposure and adverse health effects. Placental transfer of PFASs is an important excretion pathway of these chemicals in pregnant women and exposure route in fetuses. We measured PFAS concentrations in maternal, paternal, and umbilical cord serum collected from 62 pregnant Korean women and matched biological fathers of the fetuses. Placental transfer rates (cord to maternal serum ratio) of PFASs were also calculated. Demographics and pregnancy-related factors determining the placental transfer rates were identified using linear regression models. Maternal, paternal, and cord serum showed different PFASs compositions. Among the PFASs, perfluorooctane sulfonate (PFOS) showed the highest concentrations in maternal and paternal serum, while perfluorooctanoic acid (PFOA) showed the highest concentration in cord serum. There was a higher proportion of perfluoroalkyl carboxylic acids (PFCAs) with 9-12 carbon chains than those with 13-14 carbon chains in maternal and paternal serum, but this proportion was in the opposite direction in cord serum. PFOA and perfluorohexane sulfonate (PFHxS) had higher placental transfer rates (means of 0.32 and 0.36, respectively) than PFOS (mean of 0.12), which is in line with the results of previous studies. Gestational age and birth weight were positively associated with placental transfer rate of PFOA, PFHxS, and PFOS, while pre-pregnant BMI and weight were inversely associated with PFOS. This study showed that placental transfer of PFASs differs by compounds and is associated with pregnancy-related factors. Further studies on novel PFASs are warranted for Korean pregnant women.

and two human body media (human milk and blood) in China from 2010 to 2020. In addition, this study conducted multi-pathway exposure health risk assessments of populations of different ages in urban, rural, key regions, and industrial factories using the Monte-Carlo simulation. Finally, the human health ambient water quality criteria (AWQC) of eight PBDEs were derived using Chinese exposure parameters and bioaccumulation factors (BAFs). The results showed that the eastern and southeastern coastal regions of China were heavily polluted by PBDEs, and the variation trends of the ΣPBDEs concentrations in the different exposure media were not consistent. PBDEs did not pose a risk to urban and rural residents in ordinary regions, but the hazard indexes (HIs) for residents in key regions and occupational workers exceeded the safety threshold. Dust exposure was the primary exposure pathway for urban and rural residents in ordinary regions, but for residents in key regions and occupational workers, dietary exposure was the primary exposure pathway. BDE-209 was found to be the most serious individual PBDE congener in China. The following human health AWQC values of the PBDEs were derived: drinking water exposure: 0.233-65.2 μg·L-1; and drinking water and aquatic products exposure: 8.51 × 10-4-1.10 μg·L-1.

Authors: Habyeong Kang, Hee-Sun Kim, Yeong Sook Yoon, Jeongsun Lee, Younglim Kho, Jisun Lee, Hye Jin Chang, Yoon Hee Cho, Young Ah Kim
; Full Source: Toxics 2021 Jul 14;9(7):168. doi: 10.3390/toxics9070168.
; Authors: Jing Wang, Zhenguang Yan, Xin Zheng, Shuping Wang, Juntao Fan, Qianhang Sun, Jiayun Xu, Shuhui Men
; Full Source: The Science of the total environment 2021 Jul 30;799:149353. doi: 10.1016/j.scitotenv.2021.149353.