Prediction of the sorption capacities and affinities of organic chemicals by XAD-7

Macro-porous resins are widely used as adsorbents for the treatment of organic contaminants in wastewater and for the pre-concentration of organic solutes from water. However, the sorption mechanisms for organic contaminants on such adsorbents have not been systematically investigated so far. Therefore, in this study, the sorption capacities and affinities of 24 organic chemicals by XAD-7 were investigated and the experimentally obtained sorption isotherms were fitted to the Dubinin-Ashtakhov model. Linear positive correlations were observed between the sorption capacities and the solubilities (S W) of the chemicals in water or octanol and between the sorption affinities and the solvatochromic parameters of the chemicals, indicating that the sorption of various organic compounds by XAD-7 occurred by non-linear partitioning into XAD-7, rather than by adsorption on XAD-7 surfaces. Both specific interactions (i.e., hydrogen-bonding interactions) as well as nonspecific interactions were considered to be responsible for the non-linear partitioning. The correlation equations obtained in this study allow the prediction of non-linear partitioning using well-known chemical parameters, namely S W, octanol-water partition coefficients (K OW), and the hydrogen-bonding donor parameter (? m). The effect of pH on the sorption of ionisable organic compounds (IOCs) could also be predicted by combining the correlation equations with additional equations developed from the estimation of IOC dissociation rates. The prediction equations developed in this study and the proposed non-linear partition mechanism shed new light on the selective removal and pre-concentration of organic solutes from water and on the regeneration of exhausted XAD-7 using solvent extraction.

Authors: Yang K, Qi L, Wei W, Wu W, Lin D. ;Full Source: Environmental Science & Pollution Research International. 2016 Jan;23(2):1060-70. doi: 10.1007/s11356-014-4012-3. Epub 2015 Jan 6. ;