Screening ToxCastTM prioritised chemicals for PPARG function in a human adipose-derived stem cell model of adipogenesis

The developmental origins of obesity hypothesis posits a multifaceted contribution of factors to the foetal origins of obesity and metabolic disease. Adipocyte hyperplasia in gestation and early childhood may result in predisposition for obesity later in life. Rodent in vitro and in vivo studies indicate that some chemicals may directly affect adipose progenitor cell differentiation, but the human relevance of these findings is unclear. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARG) is the master regulator of adipogenesis. Human adipose-derived stem cells (hASC) isolated from adipose tissue express endogenous isoforms of PPARG and represent a biologically relevant cell-type for evaluating activity of PPARG ligands. In the present study, the authors used a multi-endpoint approach based on a phenotypic adipogenesis assay to screen a set of 60 chemical compounds identified in ToxCast(TM) Phase I as PPARG active (49) or inactive (11). Chemicals showing activity in the adipogenesis screen were further evaluated in a series of 4 orthogonal assays representing 7 different key events in PPARG-dependent adipogenesis, including gene transcription, protein expression, and adipokine secretion. An siRNA screen was also used to evaluate PPARG-dependence of the adipogenesis phenotype. A universal concentration-response design enabled inter-assay comparability and implementation of a weight-of-evidence approach for bioactivity classification. Collectively, a total of 14/49 (29%) prioritised chemicals were identified with moderate-to-strong activity for human adipogenesis. These results provide the first integrated screening approach of prioritised ToxCast(TM) chemicals in a human stem cell model of adipogenesis and provide insight into the capacity of PPARG-activating chemicals to modulate early-life programming of adipose tissue.

Authors: Foley B, Doheny D, Black M, Pendse SN, Wetmore B, Clewell R, Andersen ME, Deisenroth C. ;Full Source: Toxicological Sciences. 2016 Sep 23. pii: kfw186. [fusion_builder_container hundred_percent=”yes” overflow=”visible”][fusion_builder_row][fusion_builder_column type=”1_1″ background_position=”left top” background_color=”” border_size=”” border_color=”” border_style=”solid” spacing=”yes” background_image=”” background_repeat=”no-repeat” padding=”” margin_top=”0px” margin_bottom=”0px” class=”” id=”” animation_type=”” animation_speed=”0.3″ animation_direction=”left” hide_on_mobile=”no” center_content=”no” min_height=”none”][Epub ahead of print] ;[/fusion_builder_column][/fusion_builder_row][/fusion_builder_container]