The ability of algal organic matter and surface runoff to promote the abundance of pathogenic and non-pathogenic strains of Vibrio parahaemolyticus in Long Island Sound, USA

Food safety is a major concern in the shellfish industry, as severe illness can result from consuming shellfish that have accumulated waterborne pathogens. Shellfish harvesting areas are typically monitored for indicator bacteria such as faecal coliforms that serve as proxies for enteric pathogens although these indicators have shown little relation to some naturally occurring pathogenic bacteria such as Vibrio parahaemolyticus. To examine the dynamics and ecology of pathogenic and non-pathogenic strains of V. parahaemolyticus and address the relevance of indicator bacteria in predicting V. parahaemolyticus concentrations, field surveys and experiments were carried out in western Long Island Sound, NY, USA, a region that has experienced recent outbreaks of shellfish contaminated with V. parahaemolyticus. Pathogenic and non-pathogenic strains were quantified via PCR detection of marker genes and most probable number techniques. Field survey data showed little correspondence between faecal coliforms and V. parahaemolyticus, but significant correlations between V. parahaemolyticus and an alternative indicator, enterococci, and between V. parahaemolyticus and short-term (48 h) rainfall were observed. Experiments demonstrated that enrichment of seawater with phytoplankton-derived dissolved organic matter significantly increased the concentration of total V. parahaemolyticus and the presence pathogenic V. parahaemolyticus, but higher temperatures did not. Collectively, these study results suggest that faecal coliforms may fail to account for the full suite of important shellfish pathogens but that enterococci could provide a potential alternative or supplement to shellfish sanitation monitoring. Given the ability of algal-derived dissolved organic matter to promote the growth of pathogenic V. parahaemolyticus, restricting nutrient inputs into coastal water bodies that promote algal blooms may indirectly decrease the proliferation of V. parahaemolyticus and protect public health.

Authors: Thickman JD, Gobler CJ. ; Full Source: PLoS One. 2017 Oct 11;12(10):e0185994. doi: 10.1371/journal.pone.0185994. eCollection 2017.