The role of systemic inflammation and oxidative stress in the association of particulate air pollution metal content and early cardiovascular damage: A panel study in healthy college students


Exposure to fine particulate matter (PM2.5) has been associated with adverse cardiovascular outcomes. However, the effects of toxic metals in PM2.5 on cardiovascular health remain unknown. To investigate the early cardiovascular effects of specific PM2.5 metal constituents at the personal level, we conducted a panel study on 45 healthy college students in Caofeidian, China. Personal exposure concentrations and cardiovascular effect markers were monitored simultaneously within one year in four study periods. Four linear mixed-effects models were used to analyze the relationship between personal exposure to PM2.5 and 15 metal fractions (Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sb, and Pb) with soluble CD36 (sCD36), C-reactive protein (CRP), and oxidized low-density lipoprotein (OX-LDL) levels, heart rate, and blood pressure. The concentrations of most individual metals (Mn, Cu, Zn, As, Se, Mo, Cd, Sb and Pb) were the highest in winter. Meanwhile, there were significant differences in inflammatory (sCD36 and CRP) and oxidative stress (OX-LDL) markers in the serum of participants over the four seasons. In particular, the estimated effects of personal metal exposure (such as V, As, Se, Cd, and Pb) on sCD36 and pulse pressure (PP) levels were consistently significant across the four LME models. A significant mediating role of sCD36 was also found in the relationship between personal exposure to Zn and Cr and changes in PP levels. Our findings provide clues and potential mechanisms regarding the cardiovascular effects of specific toxic constituents of PM2.5 in healthy young adults.

Authors: Lei Zhang, Bo Fang, Haotian Wang, Hao Zeng, Nan Wang, ManMan Wang, Xuesheng Wang, Yulan Hao, Qian Wang, Wenqi Yang
; Full Source: Environmental pollution (Barking, Essex : 1987) 2023 Feb 23;323:121345. doi: 10.1016/j.envpol.2023.121345.