Urinary paracetamol and time-to-pregnancy

Lysosomal membrane permeabilisation (LMP) and subsequently impaired autophagosome degradation was induced in HepG2 cells after treatment with perfluorooctane sulfonate (PFOS) for 24?h in previous studies. The authors found that treatment of HepG2 cells with PFOS-induced autophagosome formation at earlier stage (6?h) of treatment in this study. The autophagosome formation inhibitor 3-methyladenine (3-MA) was able to relieve PFOS-induced LMP and release of cathepsin D in HepG2 cells. Knockdown of Spinster 1, a lysosomal membrane permease, attenuated PFOS-induced LMP in HepG2 cells. It was proposed that Spinster 1 might work as a specific molecule that linked autophagy with LMP. PFOS-induced collapse of mitochondrial transmembrane potential was cathepsin D and autophagy dependent. Addition of 3-MA relieved PFOS-induced apoptosis, which was evidenced by Hoechst assay, AV/PI staining and caspase-3 activity assay. Inhibition of autophagosome formation by Atg5 siRNA attenuated PFOS-induced apoptosis. Treatment of HepG2 cells with PFOS for 24?h impaired mitophagy, as evidenced by an increase of cells with giant mitochondria and impairment of colocalisation of PINK1 with light chain 3. The authors concluded that PFOS induces autophagy-dependent apoptosis in HepG2 cells through the lysosomal-mitochondrial axis and impairment of mitophagy, suggesting that autophagy is a primary target for PFOS toxicity. These findings provide new mechanistic insights into PFOS-induced hepatotoxicity. Paracetamol is a commonly used analgesic among women and men of all ages. As metabolites of select chemicals used in the manufacturing of polyurethane foam, dyes and various industrial products, as well as a common medicinal product, paracetamol and its primary metabolite p-aminophenol, are ubiquitous in the environment. Studies investigating the relationship between adult urinary concentrations of paracetamol and time-to-pregnancy (TTP) are lacking. This prospective cohort included 501 couples discontinuing contraception for the purposes of attempting conception during the years 2005-2009 and residing in Michigan or Texas, USA. Total urinary paracetamol, its metabolite para-aminophenol (p-aminophenol), and a summary measure of both urinary biomarkers were quantified by ultra-performance liquid chromatography coupled with an electrospray triple quadrupole mass spectrometry (UPLC-ESI-MS/MS). Female partners used the Clearblue® digital home test to confirm pregnancy. Cox’s proportional odds models for discrete survival time were used to estimate fecundability odds ratios (FORs) and 95% confidence intervals (CIs), adjusting for age, body mass index (BMI), urinary creatinine, preconception smoking status, race/ethnicity and household income. Models were further adjusted for hypothyroidism and hypertension as an attempt to account for possible indications of paracetamol medication use. FOR estimates <1.0 denote a longer TTP (diminished fecundity). Models were performed to examine urinary concentrations of paracetamol as a continuous and variable or categorized into quartiles. In light of TTP being a couple-dependent outcome, models were first performed for females and males, modelled separately, and then modelled for couples with each partner's concentrations being adjusted for the other. Among the 501 enrolled couples, 347 (69%) had an human chorionic gonadotrophin confirmed pregnancy. Urinary concentrations of paracetamol were lowest among females and males who achieved pregnancy and p-aminophenol concentrations were lowest among those not achieving pregnancy. Urinary paracetamol concentrations were higher among female than male partners (Median = 26.6 and 13.2 ng/ml, respectively; P < 0.0001). After adjustment for age, BMI, urinary creatinine, preconception smoking status, race/ethnicity and household income, the highest quartile of male urinary paracetamol was associated with a longer TTP [fusion_builder_container hundred_percent="yes" overflow="visible"][fusion_builder_row][fusion_builder_column type="1_1" background_position="left top" background_color="" border_size="" border_color="" border_style="solid" spacing="yes" background_image="" background_repeat="no-repeat" padding="" margin_top="0px" margin_bottom="0px" class="" id="" animation_type="" animation_speed="0.3" animation_direction="left" hide_on_mobile="no" center_content="no" min_height="none"][FOR = 0.67; 95% CI = (0.47, 0.95)]. This association remained after adjustment for chronic health conditions, hypothyroidism and hypertension and female partner's urinary paracetamol concentration [FOR = 0.65; 95% CI =(0.45, 0.94)]. No associations were observed between female or male partners' urinary concentrations of paracetamol or of its metabolite p-aminophenol when urinary concentrations were modelled continuously. Only a single spot urine was available for analysis despite the short-lived nature of paracetamol. Additionally, participants were not asked to provide information on indication of use for paracetamol medications; any underlying conditions for the paracetamol use would have been potential confounders. If corroborated with more robust studies, findings from this analysis may have both clinical and public health relevance among reproductive aged individuals, including those trying for pregnancy, given the prevalent use of paracetamol/acetaminophen medications and the ubiquitous nature of paracetamol in the environment. Authors: Smarr MM, Grantz KL, Sundaram R, Maisog JM, Honda M, Kannan K, Buck Louis GM. ;Full Source: Human Reproduction. 2016 Jul 13. pii: dew172. [Epub ahead of print] ;[/fusion_builder_column][/fusion_builder_row][/fusion_builder_container]