Which of the (Mixed) Halogenated n-Alkanes Are Likely To Be Persistent Organic Pollutants?


Short-chain polychlorinated n-alkanes are ubiquitous industrial chemicals widely recognized as persistent organic pollutants. They represent only a small fraction of the 184,600 elemental compositions (C10-25) and the myriad isomers of all possible (mixed) halogenated n-alkanes (PXAs). This study prioritizes the PXAs on the basis of their potential to persist, bioaccumulate, and undergo long-range transport guided by quantitative structure-property relationships (QSPRs), density functional theory (DFT), chemical fate models, and partitioning space. The QSPR results narrow the list to 966 elemental compositions, of which 352 (23 Br, 83 Cl/F, 119 Br/Cl, and 127 Br/F) are likely constituents of substances used as lubricants, plasticizers, and flame retardants. Complementary DFT calculations suggest that an additional 1367 elemental compositions characterized by a greater number of carbon and fluorine atoms but fewer chlorine and bromine atoms may also pose a risk. The results of this study underline the urgent need to identify and monitor these suspected pollutants, most appropriately using mass spectrometry. We estimate that the resolving power required to distinguish ∼74% of the prioritized elemental compositions from the most likely interferents, i.e., chlorinated alkanes, is approximately 60,000 (full width at half-maximum). This indicates that accurate identification of the PXAs is achievable using most high-resolution mass spectrometers.

Authors: Xiaolei Li, Tannia Chevez, Amila O De Silva, Derek C G Muir, Sonya Kleywegt, Andre Simpson, Myrna J Simpson, Karl J Jobst
; Full Source: Environmental science & technology 2021 Nov 21. doi: 10.1021/acs.est.1c05465.